
International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 403
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Abstract—Malware alter the behaviour of a host machine’s
file by self-replicating its codes unto it. On execution, some
malware change its structure so that its copies have same
functionality but differ in signature and syntax from its parent
– making signature-based detection unreliable. Machine
learning has yielded ways to evolve malware codes (even
when some employ code obfuscation) to generate complex
variants of base virus. This study samples metamorphic engine
as hybrid with GAPSO to yield faster, highly diverse variants
of base virus. It employs GA’s exploratory and flexibility to
learn feats within extracted data as well as PSO’s speed and
navigation to yield a robust optimal solution and faster,
completely morphed copies of base virus. With learning rates
set between [0.2, 0.35], φ1, = 1.5, φ2 = 2.5, ϖ = 0.14 and
MaxGen of 500 epochs – yields better and faster convergence.
Other values led to a slower convergence and/or non-
convergence. Result shows the evolved variants as tested on
commercial antivirus.

Keywords—metamorphics, evolutionary, stochastic, malware,

I. INTRODUCTION
HE computer virus is a malicious program that modifies
a host machine by attaching its code and alters behaviour
of other files. As it infects, it also modifies itself to

include better and possibly, an evolved copy of the virus
(Daodu and Jebril, 2008; Dawkins, 1989; Zakorzhevsky,
2011). Desai (2008) Brain (as the first computer virus) was a
boot sector virus created in 1986 that infects the host machine
resources such as files and macros, operating system, system
sectors, companion files and source code. Use of Internet for
data transfer has become a soft target for their widespread to
help wreck havoc faster globally. Early detection of viruses is
thus, imperative to minimize the damage caused.

A. Modules of a Computer Virus
Virus has 3-modules: infect, trigger and payload. Infect

show its mechanism to modify its host and contain copies of
it. Trigger details when and how to deliver its payload; while
the payload details damage done. Trigger and payload are
optional (Desai, 2008). Fig. 1a is virus pseudo-code; while
Fig. 1b is an infect pseudo-code. Subroutine Infect selects a
target from M-targets to infect when run. Select_target details
target selection criteria as same target should not be repeatedly
selected; else, reveals presence of a virus. And, Infect_code
performs actual infection by inserting its code into the target
(Ye et al, 2008).

Malware self-replicates its codes onto a machine without the
user’s consent, and spreads by attaching a copy of itself to
some part of program file. It attacks system resources and is
designed to deliver a payload that aims to corrupt program,

delete files, reformat disks, crash network, destroy critical data
or embark on other damage to the host machine (Szor, 2005).

Viruses are classified into (Mishra, 2003; Orr, 2006; 2007): (a)
simple virus replicates itself if launched. It gains control of the
system, attaches copy of itself to another program as it
spreads. After which, it transfers control back to host program.
It is easily detected via search/scan for a defined sequence of
bytes, known as a signature to find the virus, (b) encrypted
Viruses scrambles its signature – making it unrecognizable at
its execution. Its decryption routine transfers control to its
decrypted virus body so that each time it infects a new
program, it makes copy of both the decrypted body and its
related decryption routine. It then encrypts a copy and attaches
both to a target system. It uses an encryption key to encrypt its
body. As the key changes, it scrambles its body so that virus
appears different from one infection to another. Such virus is
difficult to detect via signature. Thus, antivirus must scan for a
constant decryption routine instead, (c) polymorphics consists
of a scrambled body, mutation engine and decryption routine.
The decryption routine gains control to decrypt both its body
and mutation engine. It then transfers control to the scrambled
body to locate a new file to infect. It copies its body and
mutation engine into RAM, and invokes its mutation engine to
randomly generate new decryption routine to decrypt its body
with little or no semblance to the previous routine. It then
appends this newly encrypted body, a mutation engine and
decryption routine to the newly infected file. Thus, the
encrypted body and the decryption routine, varies from one
infection to another. With no fixed signature and decryption
routine, no two infections is alike, and (d) metamorphics avoid
detection by rewriting completely, its code each time it infects
a new file. Its engine accomplishes this code obfuscation and
metamorphism, which in most cases – is 90% of its assembly
language codes.

A. Virus Detection Mechanisms
Antivirus software detects, prevent and remove all malware,

including but not limited to viruses, worms, Trojans, spyware
and adware. Antivirus use strategies namely: heuristic search,
cyclic redundancy check, logic search and spy on processes to
scan for viruses. Detection mechanism is broadly grouped
into: (a) signature-based scans for signature, and to evade it –
virus makers create new virus strings that can alter their

Seeking A Convergence Solution in Detecting Metamorphic: An
Hybrid Evolutionary Stochastic Framework and Model

1A.O. Eboka and 2A.A. Ojugo
1Department of Computer Science, Federal College of Education Technical, Asaba, Delta State, Nigeria. andre_y2k@yahoo.com

2Department of Mathematics/Computer Science, Federal University of Petroleum Resources Effurun, Delta State, Nigeria
ojugo.arnold@fupre.edu.ng

T

Fig 1a: Virus Pseudo-code

Def Virus():
 Infect()
 If Trigger() is TRUE then
 Payload is delivered()

Fig 1b: Infect Pseudo-code

Def Infect():
 Repeat M times()
 Target = Select_target()
 If no target() THEN
 Return
 Infect code(target)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 404
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

structure while keeping its functionality via code obfuscation
method, and (b) code emulation creates sandbox or virtual
machine, so that files are executed within it and scanned for
virus. Once the virus is detected, it is no longer a threat – since
it is running in controlled environment that limit damage to
host machine (Singhal and Raul, 2012; Rabek et al, 2003).

Antivirus often impairs system performance, and incorrect
decision may lead to security breach as it runs at the kernel of
the operating system. If an antivirus uses heuristics, its success
depends on the right balance between positives and negatives.
Today, malware may no longer be executables. Macros can
present security risk and antivirus heavily relies on signature-
detection. Metamorphic and polymorphic viruses, evades and
makes signature detection, quite ineffective (Filiolel, 2005).

Studies have shown that AVs effectiveness has decreased
against unknown or zero-day attacks. This problem has been
magnified by the changing intent of virus makers. Independent
testing on all the major virus scanners consistently shows none
to yield 100% detection. The best ones yield 99.6% detection,
while lowest is 81.8%. Consequent of the fact that all scanners
can yield a false positive result as well, identifying benign
files as malware (Hashemi et al, 2008; Grimes, 2001).

II. METAMORPHIC VIRUSES
Rather than use encryption, metamorphics change its code

structure/appearance while keeping its functionality. It does
this via code obfuscation methods as in fig 2. Its engine reads
in a virus executable, locates code to be transformed using its
locate_own_code module. Each engine has its transformation
rule that defines how a particular opcode or a sequence of
opcodes is to be transformed. Decode module extracts these
rules by disassembling. Analyze module analyzes current copy
of virus and determines what transforms must be applied to
generate the next morphed copy. Mutate module performs the
actual transformations by replacing an instruction (set) with
the other its equivalent code; While, Attach module attaches
the mutated or transformed copy to a host (Cohen, 1987;
Desai, 2008; Orr, 2007 and Sung et al, 2004).

Venkatesan (2008) note that a typical metamorphic engine
may consist of: (a) internal disassemble to disassemble binary
codes, (b) a shrinker replaces two or more codes with its
single equivalent, (c) an expander replaces an instruction with
many codes that performs same action, (d) a swapper reorders
codes by swapping two/more unrelated codes, (e) a relocator
assigns and relocate relative references such as jumps and call,
(f) a garbager (constructor) inserts whitespaces (do-nothing
codes) to the program, and (g) cleaner (destructor) undoes the
actions of a garbager by removing whitespaces/do-nothing
instructions (Desai, 2008; Konstatinou, 2008).

Feats of an effective metamorphic engine includes: (i) must
be able to handle any assembly language opcode, (ii) shrinker
and swapper must be able to process more than one instruction
concurrently, (iii) garbager is used moderately, not to affect

actual instructions, and (iv) swapper analyzes each instruction
so as not to affect next instructions’ execution (Orr, 2007;
Sung et al, 2004; Walenstein et al, 2007).

A. Metamorphic Code Obfuscation Methods
Metamorphic engine uses code obfuscation to yield morphed

copies of original program. Obfuscated code is more difficult
to understand and can generate different looking copies of a
parent file as it operates on both control flow and data section
of a program (Wong, 2006). Code obfuscation is achieved via
(Borello and Me, 2008; Desai, 2008 and Avcock, 2006):
a. Register Usage Exchange/Renaming – modifies the

register data of an instruction without changing the codes
itself, which remain constant across all morphed copies.
Thus, only the operands changes.

b. Dead Code inserts do-nothing (whitespace) codes that do
not affect execution via a block or single instruction so as
to change codes’ appearance while retaining functionality.

c. Subroutine Permutation aims to reorder subroutines so
that a program of many subroutines can generate (n-1)!
varied routine permutations, whose addition will not
affect its functionality as this is not important for its
execution.

d. Equivalent Code Substitution replaces instruction with its
equivalent instruction (or blocks). A general task can be
achieved in different ways. Same feat is used in
equivalent code substitution.

e. Transposition/Permutation – modifies program execution
order only if there is no dependency amongst instructions.

f. Code Reorder inserts unconditional and conditional
branch after each instruction (or block), and defines
branching instructions to be permuted so as to change the
programs’ control-flow. Conditional branch is always
preceded by a test instruction which always forces the
execution of the branching instruction.

g. Subroutine Inline/Outline is similar to dead code insertion
in that subroutine call are replaced with its equivalent
code as Inline inserts arbitrary dead code in a program;
while outline converts block of code into subroutine and
replace the block with a call to the subroutine. It
essentially does not preserve any logical code grouping.

B. Advantage of Metamorphic Viruses
Metamorphics transform its codes as they propagate to avoid

detection by using obfuscation methods to alters its behaviour
when it detects its execution within virtual machine (sandbox)
as means to challenge a deeper analysis (Lakhotia et al, 2004).
Virus writer use weaknesses of AVs, as limited to static and
dynamic analysis, and attacks these: (a) data flow, (b) control
flow graph generations, (c) procedure abstract, (d) property
verification, and (e) disassembly – all means to counter scans,
to identify such metamorphic viruses (Konstantinou, 2008).
To mutate its code generation, metamorphics analyze their
own codes and must re-evaluate the mutated codes generated
(since complexity of transformation in the previous generation
has a direct impact on its current state, how a virus analyses
and transforms code in its current generation). Thus, they
employ code conversion algorithm that helps them detect their
own obfuscation and reordering (Ojugo, 2010).

Locate
own code Decode Analyze Mutate Attach

Fig. 2: Distinct Signature of Metamorphic

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 405
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

III. MACHINE LEARNING AND SOFT INTELLIGENT COMPUTING
Aims to merge Artificial Intelligence with other fields, so as

to create a synergetic field, dedicated to solving problems via
optimization. It simultaneously, exploits numerical data as
well as explores human knowledge via statistical pattern
analysis tools, mathematical models and symbolic reasoning
(Ojugo et al, 2012a). The models must be robust, so that with
partial truth, imprecision, uncertainty and noise applied to its
input, it yields an output guaranteed of high quality. Such
model use Evolutionary Algorithms – capable of performing
quantitative data processing to ensure qualitative statements of
knowledge and experience as natural languages. Inspired by
behavioural patterns and evolution laws in biological
population, its tuning explores 3-basic feats: (a) adaptation to
yield agents, void of local minima with high-diverse random
immigrants introduced to slow convergence and a balance
between exploitation and exploration so that learning feats of
change, biases its solution accordingly, (b) robustness
estimates a model’s effectiveness, and (c) decision is flexible
as uncertainty feats can impacts a model’s future state in
forecasts while focusing on its goal state and ease with
blackbox integration (Ojugo, 2013).

Statistical pattern analysis has proven the most successful
technique to detect metamorphic viruses via machine learning
heuristics. It involves evolutionary optimization frameworks
and models such as neural networks, Bayesian model, hidden
Markov model, gravitational search, genetic algorithm etc –
all of which are well known modeling tools and recently, used
in detection of polymorphics cum metamorphics.

A. Models Limitations and Fitness Function
Stochastic model are often time consuming and their speed

often shrink as they approach optima with their use of hill-
climbing technique that often gets them stuck local minima.
They also require extra computational power to search, and
are computationally intensive and expensive to implement.

A fitness function evaluates if an optimal is found, as model
learns data feat/relationship, compare forecast versus observed
values. Its performance measures fitness value (Ojugo, 2012).

B. Genetic Algorithm
GA as inspired by Darwinian evolution (survival of fittest),
consists of a dataset chosen for natural selection with potential
solutions. Individuals with genes close to its optimal solution,
is fit as determined by the fitness function determines (Perez
and Marwala, 2011). GA has 4-operators namely:
a. Initialize – Individual data are encoded into format

suitable for selection. Each encodings has its
merit/demerit. Binary encoding is computationally more
expensive to achieve. Decimal encoding has greater
diversity in chromosome and greater variance of pools
generated; float-point encoding or its combination is more
efficient than binary. Thus, it encode as fixed length
vectors for one or more pools of different types. The
fitness function evaluates how close a solution is to its
optimal – after which they are chosen for reproduction. If
solution is found, function is good; else, is bad and not
selected for crossover. The fitness function is the only
part with knowledge of task. If more solutions are found,
the higher its fitness value.

b. Selection – Good fit individuals close to optimal are
chosen to mate. The larger the number of selected, the
better the chances of yielding fitter individuals. This
continues until one is chosen, from the last two/three
remaining solutions, to become selected parents to new
offspring. Selection ensures the fittest individuals are
chosen for mating but also allows for less fit individuals
from the pool and the fittest to be selected. A selection
that only mates the fittest is elitist and often leads to
converging at local optima.

c. Crossover ensures that individual of fitter gene is
exchanged to yield a new, fitter pool. There are 2-types of
crossover namely: (a) simple crossover for binary
encoded pool via particular- or multi- point; and all genes
are from one parent, and (b) arithmetic crossover allows
new pool to be created by adding an individual’s
percentage to another. The one to be used depends on
encoding type used.

d. Mutation alters chromosomes by changing its genes or its
sequence, to ensure new pool converges to global minima.
Algorithm is stopped either when an optimal is found, or
after a number of runs or once no better solution is found.
Genes change based on probability of mutation rate, and
mutation improves the needed diversity in reproduction.

Cultural GA is one of the many variants of GA with 3-belief
spaces defined as follows: (a) Normative – notes the specific
range of values to which an individual is bound, (b) Domain
belief – has information about the task domain), (c) Temporal
belief – has information about the search space that is
available), and (d) spatial belief has topographical data about
the task with time as a specific feat. In addition, CGA has an
influence function that mediates between its belief spaces and
the pool – to ensure that individuals (that are altered or not),
all in the pool conforms to the belief space. CGA is chosen so
as to yield a pool that does not violate its belief space – since
it will also help reduces the number of possible individuals
GA generates till an optimum is found (Reynolds, 1994;
Hassan and Crossley, 2004).

C. Particle Swarm Optimization
PSO as a population based optimization method that predicts

motion in swarm collective intelligence and specify a model of
randomly initialized candidates distributed in space to find its
optima. Its search for optimal solution on large amount of data
is assimilated and/or shared by the entire swarm – so that
particles are generated who have adapted to their environment
(via computed fitness function) with all constraints satisfied in
a number of moves. Also, desirable traits evolve within the
swarm though swarm’s composition remains as particles with
of better traits replace those with weaker ones (Homaifar et al,
1992).

Encoded, PSO handles discrete value as (Ojugo et al, 2012):
a. Position/Velocity Update: Particle is solution in space

that changes its position during a move, based on updates.
Swarm is initialized with random-generated positions Xi
and velocities Vi as in Eq. 1 and Eq. 2 distributed as thus:

𝑋𝑜1 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (1)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 406
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

𝑉𝑜1 =
𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)

∇𝑡 =
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑇𝑖𝑚𝑒 (2)

Hu et al (2005a,b) velocity update is achieved via fitness
function to yield particle’s best (a function of its current
position, current swarm’s global best (Pg

i) and each
particle best position Pi (current and previous). It uses the
effect of current motion (Vi

t) to give direction for the
next move Vi

t+1. To avoid trapped at local optima, it uses
Eq. 3 with Vi

t+1 as particle’s velocity at t+1, ϖ+Vi
t is

current motion, Xi
t is particle position, φ1*rand()[(Pi-

Xi
t)/∇t] is particle’s influence factor and φ2*rand() [(Pg

t-
Xi

t)/∇t] is swarm’s influence factor:
𝑉𝑡+11 = 𝜔 + 𝑉(𝑡)

1 + 𝜑1𝑟𝑎𝑛𝑑() �𝑃
1− 𝑋𝑡1�
∇𝑡

+ 𝜑2𝑟𝑎𝑛𝑑() �𝑃𝑡
2− 𝑋𝑡2�
∇𝑡

 (3)
b. Position Update is achieved in 2-steps namely: via

fitness function calculation as repeated until convergence
criteria is reached and via velocity/position update. Stop
criterion is set at, when maximum change in best fitness is
smaller than needed in the number of moves, as in Eq. 4:

𝑋𝑡+11 = 𝑋𝑡1 + 𝑉𝑡+11 ∗ ∇𝑡 �𝑓�𝑃𝑡
𝑔� − 𝑓�𝑃𝑡−𝑔

𝑔 �� ∈ 𝜀 (4)

Kennedy and Mendes (2002) and Clerc (1999) a particle
may hold values beyond Xmax and Xmin, due to its current
position and updated velocities (that grows rapidly). As
such, particles may diverge instead of converge. They are
dragged back to the nearest side constraint via Eq. 5 (that
handles particle velocity explosion constraints via linear
exterior penalty, if such particles violate bound value).

𝑓(𝑥) = 𝜑(𝑋) + � 𝑋𝑖 ∗ max [0,𝑔𝑖(𝑥)]
𝑁𝑚𝑎𝑥

𝑖=1

 (5)

Ojugo et al (2012a) PSO algorithm is as thus:
1. Input: Generations size, Output: set of permuted solutions.
2. Randomly Initial created solution population.
3. Set φ1 = 1.5, φ2 = 2.5, MaxGen = 500 epoch and T = 0
4. Set N = total solution and set generationCounter = 0
5. For each solution in population
6. Position = min(X) + rand{(max(X) – min(X)}
7. Update Velocity = (Potion / Time)
8. If best individual fitness is close to solution
9. Then compute new position as Vi

t+1 : End if
10. If particles excites out of bound then compute f(x) //bring them back
11. End if: End For Each Solution

IV. EXPERIMENTAL DESIGN FRAMEWORK

A. Virus Abstract Representation
The study uses Real Permutation metamorphic engine (as

adopted for generation of Zmist., Zperm and Zmorph viruses).
It uses substitution, transposition and trash (all permutation)
methods to build viruses of the same functionality. The engine
changes its opcode, generating new variants from old versions
(authored by Zombie and extracted from VX Heaven). Zmist
at its release was one of the most complex binary viruses ever
written. It uses Entry-Point Obscuring that supports a unique
method called code integration and occasionally inserts jumps
after every instruction in a code section, pointing to the next
instruction. It extremely modifies applications and files from
one generation to next. Thus, allowing it extreme camouflage
and making Zmist, more of a perfect (and sometimes anti-
heuristic) virus (Konstantinou, 2008 and Szor, 2005).

B. The Framework (Hybrid Model)
Our framework is an adaptation of (Noreen et al, 2008) that

aims to evolve new malware from a known virus database.
The first step is high-level of abstract representation (or
genotype) of given virus that requires great understanding of
the virus functionality and structure. It determines quality of
evolution achieved by proposed framework, while including
functional details of the virus characteristics and that of the
metamorphic engine in use. Some known feats and attributes
includes: date, domain, application-to-infect, port number,
email attachment, registry variable, mail-body, file extension,
process terminated, peer-to-peer propagation etc, which forms
its abstract representation of the base virus to be taken as input
into system (see fig 3).

Second step is the application of the evolutionary algorithm
to the high-level representation. Thus, dataset is divided into:
train (50%), cross validation (25%) and test (25%). The fitness
of offspring as evaluated in Eq. 6 is a function of the similarity
measure of the genes (chromosomes) with that of all stages of
the framework. Individuals that evolved but do not match the
training samples, their feats are stored and forms input to the
next iteration. Thus, we have these conclusions as adopted by
Noreen et al (2008) thus: (1) new individuals are malware to
be used during testing, whose abstract represented feats are
fed-back into model, (2) new individual is an unknown Zmist
virus, and (3) new individual is (not) Zmist virus. Like Noreen
et al (2008), facts 2 and 3 are established once executed within
a sandbox in an operating system at real-time.

We theorized unlike Noreen et al (2008) that if we generated
Zmist virus for test (as against having testing data from base
virus abstract representation) – it invalidates the experiment to
some degree as mutation yields a better and fitter generation.
Instead, we argued that a combination of the old feats and new
feats as extracted from both dataset and metamorphic engine
at each stage of the process as well as feedback into the
system to generate newer variants to yield greater evolution
(backward compatibility in terms of functionality to the base
virus).

GA initializes the hybrid with an entire population of 500-
input (suitable abstract representation of base virus), computes
individual fitness of each individual via Eq. 6 as well as
selects 30-individual via tournament method to yield the new
sub-pool (and determine individuals to proceed for mating).
Selected data are moved for crossover and mutation so that
model or network learns static/dynamic feats in the obtained
data. With 30-individuals selected via tournament and 2-point
crossover used, other parents contribute to yield new pool
whose genetic makeup is a combination of both parents.
Mutation will yield 3-random genes that are allocated new
random value that still conforms to belief space. The number
of mutation applied, depends on how far CGA is progressed
(and how fit is the best fit individual in the pool). Thus,
number of mutations equals fitness of the fittest individual
divided by 2. New individuals replace old ones with low
fitness values (Ojugo et al, 2013a,b).

𝐹 = �
𝑓𝑖
𝑘 (6)

𝑘

𝑖=1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 407
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Each particle in PSO (30-individuals from CGA) are moved
over and encoded as a string of positions in multidimensional
space. Position/Velocity updates are performed independently
in each dimension (a merit of PSO). Though, not for such an
evolution/permutation task, as candidate solutions depends on
each other. Thus, two/more particles have can have same
value for both velocity and position. Particles can also have
values outside the boundary after an update, which breaks the
rule of permutation. Thus, all conflicts are resolved (see Eq.
5). With larger velocity, particles explore more space and will
likely change (though all update formulas remain the same).
Velocity is limited to absolute values, which represents the
difference between particles). This continues till an individual
in the pool with a fitness of 0 is found. Thus, the solution has
been reached (Ojugo et al, 2013).

Selection and mutation in GA ensures the first 3-beliefs are
met; while velocity/position updates in PSO ensures that the
fourth belief space is met, as time is of paramount interest.
Also, influence function determines number of mutations
takes place; And knowledge of how close task is to solution,
has direct impact on how model is processed. Algorithm stops
when best individual has a fitness of 0 (Ursem et al, 2002).

C. Tradeoffs and Issues in Metamorphic Malware
Researchers designed routines to detect metamorphics (one-

by-one) and detect varied sequences of code known to be used
by given mutation engine via signature search. This method is
proved inherently impractical, time-consuming and costly as
each metamorphic requires its own detection program. Also,
the mutation engine can seemingly randomly, generate billions
variation of virus and different engines used by metamorphics
make any identification somewhat unreliable. This has led to,
mistakenly identifying one virus for another. Thus, researchers
have modeled statistical method to associate signature to such
metamorphics based on probability.

Hybrids are difficult to implement though its encoding via
structured learning addresses existing statistical dependencies
amongst variables to yield better pool via crossover/mutation.
This feat can be adapted in areas of software evolution. Use of
GAPSO hybrid with the metamorphic engine’s obfuscation
will yield Zmist virus variants in the shortest time of high and
discrete, morphed copies. Our resulting morphed copies are
tested against normal files and commercial virus scanners.

V. RESULTS AND FINDINGS

Fig. 4a: Evolved Variants Scanned with Eset

In summary, with fitness function and selection criteria that
is common to both GA and PSO, it is discovered that learning

rates set between 0.2 and 0.35, and PSO parameters set thus:
φ1, = 1.5, φ2 = 2.5, MaxGen = 500 epochs and ϖ = 0.14 yields
a better and faster convergence. Other parameter values led to
a slower convergence and sometimes, non-convergence. When
tested against commercial antivirus, the evolved virus as
scanned with ESET detects 56% of generated variants; while
Norton Symantec detects 47% as in fig. 4a and 4b.

Fig. 4b: Evolved Variants scanned with Norton Symantec

VI. CONCLUSION
With Noreen et al (2008), we note that though the proposed

framework is posed as an evolvable malware system. It can be
adapted to software evolution – which is a process associated
with modifying existing software for both backward and
forward compatibility as well as emphasizes component reuse
(Gray and Klefstad, 2005). Also, a wide variety of replicative
and non-replicative malware can also be evolved via proposed
framework to increase network security research and study.

REFERENCES
[1] Aycock, J., (2006). Computer Viruses and malware, Springer Science

and Business Media.

[2] Borello, J and Me, L., (2008). Code obfuscation techniques for
Metamorphics, www.springerlink.com/content/233883w3r2652537

[3] Cohen, F., (1987). Computer viruses: theory and experiments,
Computer Security, 6(1), p22-35.

[4] Clerc, M., (1999). The swarm and the queen: towards a deterministic
and adaptive particle swarm optimization, In Proceedings of
Evolutionary Computation (IEEE), 5, p123-132.

[5] Daoud, E and Jebril, I., (2008). Computer Virus Strategies and
Detection Methods, Int J. Open Problems Computational Mathematics,
1(2), www.emis.de/journals/IJOPCM/files/IJOPCM(vol.1.2.3.S.08).pdf

[6] Dawkins, R., (1989). The selfish gene (2nd edition), Oxford Univ. Press

[7] Filiol, E., (2005). Computer Viruses: from Theory to Applications, New
York, Springer, ISBN 10: 2287-23939-1.

[8] Gray, J and Klefstad, R., (2005). Adaptive and evolvable software
systems: techniques, tools and applications, 38th Annual Hawaii Int.
Conf. on System Sciences, p274, IEEE Press.

[9] Grimes, R., (2001). Malicious Mobile Code: Virus Protection for
Windows, O'Reilly and Associates, Inc., Sebastopol, CA, USA.

[10] Hashemi,S., Yang, Y., Zabihzadeh, D and Kangavari, M., (2008).
Detecting intrusion transactions in databases using data item
dependencies and anomaly analysis, Expert Systems, 25(5), p460,
doi:10.1111/j.1468-0394.2008.00467.x

[11] Hassan, R and Crosswley, W., (2004). Variable population-based
sampling for probabilistic design optimization and with a genetic
algorithm, Proceedings of 42nd Aerospace Science, p32, Reno: NV.

[12] Hassan, R., Cohanin, B., De Wec and Venter, G., (2004) Comparison
of PSO and GA, Proceeding of 44th Aerospace Sci.,Washington, p56.

0%

Win32
Zmist
10% Zmist.ge

n!
18%

Zmist!|K
18%

Zmist.A
10%

Unknow
n

44%

Win32.Z
mist
4%

Zmist.ge
n!

11%

Zmist!|K
16%

Zmist.A
16%

Unknow
n

53%

IJSER

http://www.ijser.org/
http://www.springerlink.com/content/233883w3r2652537
http://www.emis.de/journals/IJOPCM/files/IJOPCM(vol.1.2.3.S.08).pdf

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 408
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

[13] Homaifar, A.A., Turner, J and Ali, S., (1992). N-queens problem and
genetic algorithms”, Proceedings of IEEE Southeast conference, p262.

[14] Hu, X., Eberhart, R.C and Kennedy, J., (2005a). Solving constrained
nonlinear optimization problems with PSO, Proceeding Multi-
conference on Systems, Cybernetics and Informatics, p234.

[15] Hu, X., Eberhart, R.C and Shi, Y., (2005b). Swarm intelligence for
permutation optimization: case study of n-queens, Proceedings of
Genetic Evolutionary Computing on Memetic Algorithms (IEEE), p243

[16] Kennedy, J and Mendes, R., (2002). Population structure and particle
swarm performance, Proceedings of Congress on Evolutionary
Computation (IEEE), p1671, Honolulu: Piscataway.

[17] Konstantinou, E., (2008). Metamorphic virus: Analysis and Detection,
Technical report (RHUL-MA-2008-02), Dept. of Mathematics, Royal
Holloway, University of London.

[18] Lakhotia, A., Kapoor, A and Kumar, E.U., (2004). Are metamorphic
computer viruses really invisible? Part 1, Virus bulletin, p5-7.

[19] Mishra, P., (2003). Taxonomy of software unique transformations,
www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc

[20] Ojugo, A.A, (2010). The computer virus evolution: polymorphics
analysis and detection, J. of Academic Research, 15(8), p34 – 46.

[21] Ojugo, A., Eboka, A., Okonta, E., Yoro, R and Aghware, F., (2012).
GA rule-based intrusion detection system, J. of Computing and
Information Systems, 3(8), p1182.

[22] Ojugo, A.A., and Yoro, R., (2013a). Computational intelligence in
stochastic solution for Toroidal Queen task, Progress in Intelligence
Computing Applications, 2(1), doi: 10.4156/pica.vol2.issue1.4, p46

[23] Ojugo, A.A., Emudianughe, J., Yoro, R.E., Okonta, E.O and Eboka,
A.O., (2013b). Hybrid artificial neural network gravitational search
algorithm for rainfall runoff, Progress in Intelligence Computing and
Applications, 2(1), doi: 10.4156/pica.vol2.issue1.2, p22.

[24] Orr, (2006). The viral Darwinism of W32.Evol: An in-depth analysis of
a metamorphic engine, http://www.antilife.org/files/Evol.pdf

[25] Orr, (2007). The molecular virology of Lexotan32: Metamorphism
illustrated, http://www.antilife.org/files/Lexo32.pdf

[26] Rabek, J., Khazan, R., Lewandowski, S., Cunningham, R., (2003).
Detection of injected, dynamic generated and obfuscated malicious
code, Proceeding ACM Workshop on Rapid Malcode, p76.

[27] Reynolds, R., (1994). An introduction to cultural algorithms, IEEE
Transaction on Evolutionary Programming, p131.

[28] Singhal, P and Raul, N., (2012). Malware detection module using
machine learning algorithm to assist centralized security in Enterprise
networks, Int. J. Network Security and Applications, 4(1), doi:
10.5121/ijnsa.2012.4106, p61

[29] Sung, A., Xu, J., Chavez, P., Mukkamala, S., (2004). Static analyzer of
vicious executables, Proceedings of 20th Annual Computer Security
Applications Conf., IEEE Computer Society, p326-334.

[30] Szor, P., (2005). The Art of Computer Virus Research and Defense,
Addison Wesley Symantec Press. ISBN-10: 0321304543, New Jersey.

[31] Ursem, R., Krink, T., Jensen, M.and Michalewicz, Z., (2002). Analysis
and modeling of controls in dynamic systems. IEEE Transaction on
Evolutionary Computing, 6(4), p378-389.

[32] Walenstein, R., Mathur, M., Chouchane R., and Lakhotia, A., (2007).
The design space of metamorphic malware, Proceedings of 2nd Int.
Conference on Information Warfare, p243.

[33] Wong, W., (2006). Analysis and Detection of Metamorphic Computer
Viruses, Master’s thesis, San Jose State University,
http://www.cs.sjsu.edu/faculty/students/Report.pdf

[34] Venkatesan, A., (2008). Code Obfuscation and Metamorphic Virus
Detection, Master thesis, San Jose State University,
www.cs.sjsu.edu/faculty/students/ashwini_venkatesan_cs298report.doc

[35] VX Heavens Virus Collection, Available at: http://vx.netlux.org/

[36] Ye, Y., Wang, D., Li, T and Ye, D., (2008). Intelligent malware
detection based on association mining, J. Computer Virology, 4(4),
p323–334, doi: 10.1007/s11416-008-0082-4.

[37] Zakorzhevsky, E.R., (2011). Monthly Malware Statistics,
www.securelist.com/en/analysis/204792182/Monthly_Malware_Statisti
cs_June_2011.

Check
Fitness

25%

25%

50%

Fig. 3: Experimental Model for Virus Generation

Virus
Database

Abstracted
Rep. of Base-

Virus

Train

Cross
Validate

Test

Select Parameters
weight and biases

2-point
Crossover and

Mutation

Generate
morphed copy

GAPSO Model

Configure
match pattern
via learning

updates

Output/Test
New Virus

Selected
Feats from

Metamorphic
Engine

Store
Malware

Feats

Generate Virus
Code

IJSER

http://www.ijser.org/
http://www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc
http://www.antilife.org/files/Evol.pdf
http://www.antilife.org/files/Lexo32.pdf
http://vx.netlux.org/

	I. INTRODUCTION
	A. Modules of a Computer Virus
	A. Virus Detection Mechanisms

	II. metamorphic viruses
	A. Metamorphic Code Obfuscation Methods
	B. Advantage of Metamorphic Viruses

	III. machine learning and soft intelligent computing
	A. Models Limitations and Fitness Function
	B. Genetic Algorithm
	C. Particle Swarm Optimization

	IV. Experimental design framework
	A. Virus Abstract Representation
	B. The Framework (Hybrid Model)
	C. Tradeoffs and Issues in Metamorphic Malware

	V. Results and findings
	VI. conclusion

