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Abstract—Malware alter the behaviour of a host machine’s 
file by self-replicating its codes unto it. On execution, some 
malware change its structure so that its copies have same 
functionality but differ in signature and syntax from its parent 
– making signature-based detection unreliable. Machine 
learning has yielded ways to evolve malware codes (even 
when some employ code obfuscation) to generate complex 
variants of base virus. This study samples metamorphic engine 
as hybrid with GAPSO to yield faster, highly diverse variants 
of base virus. It employs GA’s exploratory and flexibility to 
learn feats within extracted data as well as PSO’s speed and 
navigation to yield a robust optimal solution and faster, 
completely morphed copies of base virus. With learning rates 
set between [0.2, 0.35], φ1, = 1.5, φ2 = 2.5, ϖ = 0.14 and 
MaxGen of 500 epochs – yields better and faster convergence. 
Other values led to a slower convergence and/or non-
convergence. Result shows the evolved variants as tested on 
commercial antivirus.  
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I. INTRODUCTION 
HE computer virus is a malicious program that modifies 
a host machine by attaching its code and alters behaviour 
of other files. As it infects, it also modifies itself to 

include better and possibly, an evolved copy of the virus 
(Daodu and Jebril, 2008; Dawkins, 1989; Zakorzhevsky, 
2011). Desai (2008) Brain (as the first computer virus) was a 
boot sector virus created in 1986 that infects the host machine 
resources such as files and macros, operating system, system 
sectors, companion files and source code. Use of Internet for 
data transfer has become a soft target for their widespread to 
help wreck havoc faster globally. Early detection of viruses is 
thus, imperative to minimize the damage caused.  

A. Modules of a Computer Virus 
Virus has 3-modules: infect, trigger and payload. Infect 

show its mechanism to modify its host and contain copies of 
it. Trigger details when and how to deliver its payload; while 
the payload details damage done. Trigger and payload are 
optional (Desai, 2008). Fig. 1a is virus pseudo-code; while 
Fig. 1b is an infect pseudo-code. Subroutine Infect selects a 
target from M-targets to infect when run. Select_target details 
target selection criteria as same target should not be repeatedly 
selected; else, reveals presence of a virus. And, Infect_code 
performs actual infection by inserting its code into the target 
(Ye et al, 2008). 

Malware self-replicates its codes onto a machine without the 
user’s consent, and spreads by attaching a copy of itself to 
some part of program file. It attacks system resources and is 
designed to deliver a payload that aims to corrupt program, 

delete files, reformat disks, crash network, destroy critical data 
or embark on other damage to the host machine (Szor, 2005). 
 
 
 
 
 
 

 
 
Viruses are classified into (Mishra, 2003; Orr, 2006; 2007): (a) 
simple virus replicates itself if launched. It gains control of the 
system, attaches copy of itself to another program as it 
spreads. After which, it transfers control back to host program. 
It is easily detected via search/scan for a defined sequence of 
bytes, known as a signature to find the virus, (b) encrypted 
Viruses scrambles its signature – making it unrecognizable at 
its execution. Its decryption routine transfers control to its 
decrypted virus body so that each time it infects a new 
program, it makes copy of both the decrypted body and its 
related decryption routine. It then encrypts a copy and attaches 
both to a target system. It uses an encryption key to encrypt its 
body. As the key changes, it scrambles its body so that virus 
appears different from one infection to another. Such virus is 
difficult to detect via signature. Thus, antivirus must scan for a 
constant decryption routine instead, (c) polymorphics consists 
of a scrambled body, mutation engine and decryption routine. 
The decryption routine gains control to decrypt both its body 
and mutation engine. It then transfers control to the scrambled 
body to locate a new file to infect. It copies its body and 
mutation engine into RAM, and invokes its mutation engine to 
randomly generate new decryption routine to decrypt its body 
with little or no semblance to the previous routine. It then 
appends this newly encrypted body, a mutation engine and 
decryption routine to the newly infected file. Thus, the 
encrypted body and the decryption routine, varies from one 
infection to another. With no fixed signature and decryption 
routine, no two infections is alike, and (d) metamorphics avoid 
detection by rewriting completely, its code each time it infects 
a new file. Its engine accomplishes this code obfuscation and 
metamorphism, which in most cases – is 90% of its assembly 
language codes.  

A. Virus Detection Mechanisms 
Antivirus software detects, prevent and remove all malware, 

including but not limited to viruses, worms, Trojans, spyware 
and adware. Antivirus use strategies namely: heuristic search, 
cyclic redundancy check, logic search and spy on processes to 
scan for viruses. Detection mechanism is broadly grouped 
into: (a) signature-based scans for signature, and to evade it – 
virus makers create new virus strings that can alter their 
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Fig 1a: Virus Pseudo-code 

Def Virus(): 
 Infect() 
 If Trigger() is TRUE then 
  Payload is delivered() 

Fig 1b: Infect Pseudo-code 

Def Infect(): 
 Repeat M times() 
     Target = Select_target() 
   If no target() THEN 
    Return 
  Infect code(target) 
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structure while keeping its functionality via code obfuscation 
method, and (b) code emulation creates sandbox or virtual 
machine, so that files are executed within it and scanned for 
virus. Once the virus is detected, it is no longer a threat – since 
it is running in controlled environment that limit damage to 
host machine (Singhal and Raul, 2012; Rabek et al, 2003). 

Antivirus often impairs system performance, and incorrect 
decision may lead to security breach as it runs at the kernel of 
the operating system. If an antivirus uses heuristics, its success 
depends on the right balance between positives and negatives. 
Today, malware may no longer be executables. Macros can 
present security risk and antivirus heavily relies on signature-
detection. Metamorphic and polymorphic viruses, evades and 
makes signature detection, quite ineffective (Filiolel, 2005).  

Studies have shown that AVs effectiveness has decreased 
against unknown or zero-day attacks. This problem has been 
magnified by the changing intent of virus makers. Independent 
testing on all the major virus scanners consistently shows none 
to yield 100% detection. The best ones yield 99.6% detection, 
while lowest is 81.8%. Consequent of the fact that all scanners 
can yield a false positive result as well, identifying benign 
files as malware (Hashemi et al, 2008; Grimes, 2001). 

II. METAMORPHIC VIRUSES 
Rather than use encryption, metamorphics change its code 

structure/appearance while keeping its functionality. It does 
this via code obfuscation methods as in fig 2. Its engine reads 
in a virus executable, locates code to be transformed using its 
locate_own_code module. Each engine has its transformation 
rule that defines how a particular opcode or a sequence of 
opcodes is to be transformed. Decode module extracts these 
rules by disassembling. Analyze module analyzes current copy 
of virus and determines what transforms must be applied to 
generate the next morphed copy. Mutate module performs the 
actual transformations by replacing an instruction (set) with 
the other its equivalent code; While, Attach module attaches 
the mutated or transformed copy to a host (Cohen, 1987; 
Desai, 2008; Orr, 2007 and Sung et al, 2004).  
 
 
 
 
 
 
Venkatesan (2008) note that a typical metamorphic engine 
may consist of: (a) internal disassemble to disassemble binary 
codes, (b) a shrinker replaces two or more codes with its 
single equivalent, (c) an expander replaces an instruction with 
many codes that performs same action, (d) a swapper reorders 
codes by swapping two/more unrelated codes, (e) a relocator 
assigns and relocate relative references such as jumps and call, 
(f) a garbager (constructor) inserts whitespaces (do-nothing 
codes) to the program, and (g) cleaner (destructor) undoes the 
actions of a garbager by removing whitespaces/do-nothing 
instructions (Desai, 2008; Konstatinou, 2008). 

Feats of an effective metamorphic engine includes: (i) must 
be able to handle any assembly language opcode, (ii) shrinker 
and swapper must be able to process more than one instruction 
concurrently, (iii) garbager is used moderately, not to affect 

actual instructions, and (iv) swapper analyzes each instruction 
so as not to affect next instructions’ execution (Orr, 2007; 
Sung et al, 2004; Walenstein et al, 2007). 

A. Metamorphic Code Obfuscation Methods 
Metamorphic engine uses code obfuscation to yield morphed 

copies of original program. Obfuscated code is more difficult 
to understand and can generate different looking copies of a 
parent file as it operates on both control flow and data section 
of a program (Wong, 2006). Code obfuscation is achieved via 
(Borello and Me, 2008; Desai, 2008 and Avcock, 2006): 
a. Register Usage Exchange/Renaming – modifies the 

register data of an instruction without changing the codes 
itself, which remain constant across all morphed copies. 
Thus, only the operands changes. 

b. Dead Code inserts do-nothing (whitespace) codes that do 
not affect execution via a block or single instruction so as 
to change codes’ appearance while retaining functionality.  

c. Subroutine Permutation aims to reorder subroutines so 
that a program of many subroutines can generate (n-1)! 
varied routine permutations, whose addition will not 
affect its functionality as this is not important for its 
execution.  

d. Equivalent Code Substitution replaces instruction with its 
equivalent instruction (or blocks). A general task can be 
achieved in different ways. Same feat is used in 
equivalent code substitution. 

e. Transposition/Permutation – modifies program execution 
order only if there is no dependency amongst instructions. 

f. Code Reorder inserts unconditional and conditional 
branch after each instruction (or block), and defines 
branching instructions to be permuted so as to change the 
programs’ control-flow. Conditional branch is always 
preceded by a test instruction which always forces the 
execution of the branching instruction. 

g. Subroutine Inline/Outline is similar to dead code insertion 
in that subroutine call are replaced with its equivalent 
code as Inline inserts arbitrary dead code in a program; 
while outline converts block of code into subroutine and 
replace the block with a call to the subroutine. It 
essentially does not preserve any logical code grouping. 

B. Advantage of Metamorphic Viruses 
Metamorphics transform its codes as they propagate to avoid 

detection by using obfuscation methods to alters its behaviour 
when it detects its execution within virtual machine (sandbox) 
as means to challenge a deeper analysis (Lakhotia et al, 2004). 
Virus writer use weaknesses of AVs, as limited to static and 
dynamic analysis, and attacks these: (a) data flow, (b) control 
flow graph generations, (c) procedure abstract, (d) property 
verification, and (e) disassembly – all means to counter scans, 
to identify such metamorphic viruses (Konstantinou, 2008). 
To mutate its code generation, metamorphics analyze their 
own codes and must re-evaluate the mutated codes generated 
(since complexity of transformation in the previous generation 
has a direct impact on its current state, how a virus analyses 
and transforms code in its current generation). Thus, they 
employ code conversion algorithm that helps them detect their 
own obfuscation and reordering (Ojugo, 2010).  

Locate 
own code Decode Analyze Mutate Attach 

Fig. 2: Distinct Signature of Metamorphic 
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III. MACHINE LEARNING AND SOFT INTELLIGENT COMPUTING 
Aims to merge Artificial Intelligence with other fields, so as 

to create a synergetic field, dedicated to solving problems via 
optimization. It simultaneously, exploits numerical data as 
well as explores human knowledge via statistical pattern 
analysis tools, mathematical models and symbolic reasoning 
(Ojugo et al, 2012a). The models must be robust, so that with 
partial truth, imprecision, uncertainty and noise applied to its 
input, it yields an output guaranteed of high quality. Such 
model use Evolutionary Algorithms – capable of performing 
quantitative data processing to ensure qualitative statements of 
knowledge and experience as natural languages. Inspired by 
behavioural patterns and evolution laws in biological 
population, its tuning explores 3-basic feats: (a) adaptation to 
yield agents, void of local minima with high-diverse random 
immigrants introduced to slow convergence and a balance 
between exploitation and exploration so that learning feats of 
change, biases its solution accordingly, (b) robustness 
estimates a model’s effectiveness, and (c) decision is flexible 
as uncertainty feats can impacts a model’s future state in 
forecasts while focusing on its goal state and ease with 
blackbox integration (Ojugo, 2013). 

Statistical pattern analysis has proven the most successful 
technique to detect metamorphic viruses via machine learning 
heuristics. It involves evolutionary optimization frameworks 
and models such as neural networks, Bayesian model, hidden 
Markov model, gravitational search, genetic algorithm etc – 
all of which are well known modeling tools and recently, used 
in detection of polymorphics cum metamorphics.   

A. Models Limitations and Fitness Function 
Stochastic model are often time consuming and their speed 

often shrink as they approach optima with their use of hill-
climbing technique that often gets them stuck local minima. 
They also require extra computational power to search, and 
are computationally intensive and expensive to implement. 

A fitness function evaluates if an optimal is found, as model 
learns data feat/relationship, compare forecast versus observed 
values. Its performance measures fitness value (Ojugo, 2012).  

B. Genetic Algorithm 
GA as inspired by Darwinian evolution (survival of fittest), 
consists of a dataset chosen for natural selection with potential 
solutions. Individuals with genes close to its optimal solution, 
is fit as determined by the fitness function determines (Perez 
and Marwala, 2011). GA has 4-operators namely:  
a. Initialize – Individual data are encoded into format 

suitable for selection. Each encodings has its 
merit/demerit. Binary encoding is computationally more 
expensive to achieve. Decimal encoding has greater 
diversity in chromosome and greater variance of pools 
generated; float-point encoding or its combination is more 
efficient than binary. Thus, it encode as fixed length 
vectors for one or more pools of different types. The 
fitness function evaluates how close a solution is to its 
optimal – after which they are chosen for reproduction. If 
solution is found, function is good; else, is bad and not 
selected for crossover. The fitness function is the only 
part with knowledge of task. If more solutions are found, 
the higher its fitness value.  

b. Selection – Good fit individuals close to optimal are 
chosen to mate. The larger the number of selected, the 
better the chances of yielding fitter individuals. This 
continues until one is chosen, from the last two/three 
remaining solutions, to become selected parents to new 
offspring. Selection ensures the fittest individuals are 
chosen for mating but also allows for less fit individuals 
from the pool and the fittest to be selected. A selection 
that only mates the fittest is elitist and often leads to 
converging at local optima. 

c. Crossover ensures that individual of fitter gene is 
exchanged to yield a new, fitter pool. There are 2-types of 
crossover namely: (a) simple crossover for binary 
encoded pool via particular- or multi- point; and all genes 
are from one parent, and (b) arithmetic crossover allows 
new pool to be created by adding an individual’s 
percentage to another. The one to be used depends on 
encoding type used.   

d. Mutation alters chromosomes by changing its genes or its 
sequence, to ensure new pool converges to global minima. 
Algorithm is stopped either when an optimal is found, or 
after a number of runs or once no better solution is found. 
Genes change based on probability of mutation rate, and 
mutation improves the needed diversity in reproduction. 

 
Cultural GA is one of the many variants of GA with 3-belief 
spaces defined as follows: (a) Normative – notes the specific 
range of values to which an individual is bound, (b) Domain 
belief – has information about the task domain), (c) Temporal 
belief – has information about the search space that is 
available), and (d) spatial belief has topographical data about 
the task with time as a specific feat. In addition, CGA has an 
influence function that mediates between its belief spaces and 
the pool – to ensure that individuals (that are altered or not), 
all in the pool conforms to the belief space. CGA is chosen so 
as to yield a pool that does not violate its belief space – since 
it will also help reduces the number of possible individuals 
GA generates till an optimum is found (Reynolds, 1994; 
Hassan and Crossley, 2004).  

C. Particle Swarm Optimization 
PSO as a population based optimization method that predicts 

motion in swarm collective intelligence and specify a model of 
randomly initialized candidates distributed in space to find its 
optima. Its search for optimal solution on large amount of data 
is assimilated and/or shared by the entire swarm – so that 
particles are generated who have adapted to their environment 
(via computed fitness function) with all constraints satisfied in 
a number of moves. Also, desirable traits evolve within the 
swarm though swarm’s composition remains as particles with 
of better traits replace those with weaker ones (Homaifar et al, 
1992). 

Encoded, PSO handles discrete value as (Ojugo et al, 2012): 
a. Position/Velocity Update: Particle is solution in space 

that changes its position during a move, based on updates. 
Swarm is initialized with random-generated positions Xi 
and velocities Vi as in Eq. 1 and Eq. 2 distributed as thus: 

 

𝑋𝑜1 =  𝑋𝑚𝑖𝑛 +  𝑟𝑎𝑛𝑑(𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛)        (1) 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018                                                                                           406 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org 

𝑉𝑜1 =  
𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 )

∇𝑡 =  
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑇𝑖𝑚𝑒   (2) 

Hu et al (2005a,b) velocity update is achieved via fitness 
function to yield particle’s best (a function of its current 
position, current swarm’s global best (Pg

i) and each 
particle best position Pi (current and previous). It uses the 
effect of current motion (Vi

t) to give direction for the 
next move Vi

t+1. To avoid trapped at local optima, it uses 
Eq. 3 with Vi

t+1 as particle’s velocity at t+1, ϖ+Vi
t is 

current motion, Xi
t is particle position, φ1*rand()[(Pi-

Xi
t)/∇t] is particle’s influence factor and φ2*rand() [(Pg

t-
Xi

t)/∇t] is swarm’s influence factor: 
𝑉𝑡+11 = 𝜔 +  𝑉(𝑡)

1 + 𝜑1𝑟𝑎𝑛𝑑() �𝑃
1− 𝑋𝑡1�
∇𝑡

+ 𝜑2𝑟𝑎𝑛𝑑() �𝑃𝑡
2− 𝑋𝑡2�
∇𝑡

 (3)  
b. Position Update is achieved in 2-steps namely: via 

fitness function calculation as repeated until convergence 
criteria is reached and via velocity/position update. Stop 
criterion is set at, when maximum change in best fitness is 
smaller than needed in the number of moves, as in Eq. 4: 

 

𝑋𝑡+11 = 𝑋𝑡1 + 𝑉𝑡+11 ∗  ∇𝑡 �𝑓�𝑃𝑡
𝑔� −  𝑓�𝑃𝑡−𝑔

𝑔 �� ∈ 𝜀  (4) 
 

Kennedy and Mendes (2002) and Clerc (1999) a particle 
may hold values beyond Xmax and Xmin, due to its current 
position and updated velocities (that grows rapidly). As 
such, particles may diverge instead of converge. They are 
dragged back to the nearest side constraint via Eq. 5 (that 
handles particle velocity explosion constraints via linear 
exterior penalty, if such particles violate bound value). 
 

𝑓(𝑥) =  𝜑(𝑋) + � 𝑋𝑖 ∗ max [0,𝑔𝑖(𝑥)]
𝑁𝑚𝑎𝑥

𝑖=1

    (5) 

 

Ojugo et al (2012a) PSO algorithm is as thus: 
1. Input: Generations size, Output: set of permuted solutions.  
2. Randomly Initial created solution population. 
3. Set φ1 = 1.5, φ2 = 2.5, MaxGen = 500 epoch and T = 0 
4. Set N = total solution and set generationCounter = 0 
5. For each solution in population 
6.   Position = min(X) + rand{(max(X) – min(X)} 
7.   Update Velocity = (Potion / Time)   
8.      If best individual fitness is close to solution 
9.         Then compute new position as Vi

t+1 :  End if 
10. If particles excites out of bound then compute f(x) //bring them back 
11.      End if: End For Each Solution 

IV. EXPERIMENTAL DESIGN FRAMEWORK 

A. Virus Abstract Representation 
The study uses Real Permutation metamorphic engine (as 

adopted for generation of Zmist., Zperm and Zmorph viruses). 
It uses substitution, transposition and trash (all permutation) 
methods to build viruses of the same functionality. The engine 
changes its opcode, generating new variants from old versions 
(authored by Zombie and extracted from VX Heaven). Zmist 
at its release was one of the most complex binary viruses ever 
written. It uses Entry-Point Obscuring that supports a unique 
method called code integration and occasionally inserts jumps 
after every instruction in a code section, pointing to the next 
instruction. It extremely modifies applications and files from 
one generation to next. Thus, allowing it extreme camouflage 
and making Zmist, more of a perfect (and sometimes anti-
heuristic) virus (Konstantinou, 2008 and Szor, 2005). 

B. The Framework (Hybrid Model) 
Our framework is an adaptation of (Noreen et al, 2008) that 

aims to evolve new malware from a known virus database. 
The first step is high-level of abstract representation (or 
genotype) of given virus that requires great understanding of 
the virus functionality and structure. It determines quality of 
evolution achieved by proposed framework, while including 
functional details of the virus characteristics and that of the 
metamorphic engine in use. Some known feats and attributes 
includes: date, domain, application-to-infect, port number, 
email attachment, registry variable, mail-body, file extension, 
process terminated, peer-to-peer propagation etc, which forms 
its abstract representation of the base virus to be taken as input 
into system (see fig 3). 

Second step is the application of the evolutionary algorithm 
to the high-level representation. Thus, dataset is divided into: 
train (50%), cross validation (25%) and test (25%). The fitness 
of offspring as evaluated in Eq. 6 is a function of the similarity 
measure of the genes (chromosomes) with that of all stages of 
the framework. Individuals that evolved but do not match the 
training samples, their feats are stored and forms input to the 
next iteration. Thus, we have these conclusions as adopted by 
Noreen et al (2008) thus: (1) new individuals are malware to 
be used during testing, whose abstract represented feats are 
fed-back into model, (2) new individual is an unknown Zmist 
virus, and (3) new individual is (not) Zmist virus. Like Noreen 
et al (2008), facts 2 and 3 are established once executed within 
a sandbox in an operating system at real-time.  

We theorized unlike Noreen et al (2008) that if we generated 
Zmist virus for test (as against having testing data from base 
virus abstract representation) – it invalidates the experiment to 
some degree as mutation yields a better and fitter generation. 
Instead, we argued that a combination of the old feats and new 
feats as extracted from both dataset and metamorphic engine 
at each stage of the process as well as feedback into the 
system to generate newer variants to yield greater evolution 
(backward compatibility in terms of functionality to the base 
virus).  

GA initializes the hybrid with an entire population of 500-
input (suitable abstract representation of base virus), computes 
individual fitness of each individual via Eq. 6 as well as 
selects 30-individual via tournament method to yield the new 
sub-pool (and determine individuals to proceed for mating). 
Selected data are moved for crossover and mutation so that 
model or network learns static/dynamic feats in the obtained 
data. With 30-individuals selected via tournament and 2-point 
crossover used, other parents contribute to yield new pool 
whose genetic makeup is a combination of both parents. 
Mutation will yield 3-random genes that are allocated new 
random value that still conforms to belief space. The number 
of mutation applied, depends on how far CGA is progressed 
(and how fit is the best fit individual in the pool). Thus, 
number of mutations equals fitness of the fittest individual 
divided by 2. New individuals replace old ones with low 
fitness values (Ojugo et al, 2013a,b). 
 

𝐹 =  �
𝑓𝑖
𝑘     (6)

𝑘

𝑖=1
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Each particle in PSO (30-individuals from CGA) are moved 
over and encoded as a string of positions in multidimensional 
space. Position/Velocity updates are performed independently 
in each dimension (a merit of PSO). Though, not for such an 
evolution/permutation task, as candidate solutions depends on 
each other. Thus, two/more particles have can have same 
value for both velocity and position. Particles can also have 
values outside the boundary after an update, which breaks the 
rule of permutation. Thus, all conflicts are resolved (see Eq. 
5). With larger velocity, particles explore more space and will 
likely change (though all update formulas remain the same). 
Velocity is limited to absolute values, which represents the 
difference between particles). This continues till an individual 
in the pool with a fitness of 0 is found. Thus, the solution has 
been reached (Ojugo et al, 2013). 

Selection and mutation in GA ensures the first 3-beliefs are 
met; while velocity/position updates in PSO ensures that the 
fourth belief space is met, as time is of paramount interest. 
Also, influence function determines number of mutations 
takes place; And knowledge of how close task is to solution, 
has direct impact on how model is processed. Algorithm stops 
when best individual has a fitness of 0 (Ursem et al, 2002). 

C. Tradeoffs and Issues in Metamorphic Malware 
Researchers designed routines to detect metamorphics (one-

by-one) and detect varied sequences of code known to be used 
by given mutation engine via signature search. This method is 
proved inherently impractical, time-consuming and costly as 
each metamorphic requires its own detection program. Also, 
the mutation engine can seemingly randomly, generate billions 
variation of virus and different engines used by metamorphics 
make any identification somewhat unreliable. This has led to, 
mistakenly identifying one virus for another. Thus, researchers 
have modeled statistical method to associate signature to such 
metamorphics based on probability.  

Hybrids are difficult to implement though its encoding via 
structured learning addresses existing statistical dependencies 
amongst variables to yield better pool via crossover/mutation. 
This feat can be adapted in areas of software evolution. Use of 
GAPSO hybrid with the metamorphic engine’s obfuscation 
will yield Zmist virus variants in the shortest time of high and 
discrete, morphed copies. Our resulting morphed copies are 
tested against normal files and commercial virus scanners. 

V. RESULTS AND FINDINGS 

 
Fig. 4a: Evolved Variants Scanned with Eset 
 

In summary, with fitness function and selection criteria that 
is common to both GA and PSO, it is discovered that learning 

rates set between 0.2 and 0.35, and PSO parameters set thus: 
φ1, = 1.5, φ2 = 2.5, MaxGen = 500 epochs and ϖ = 0.14 yields 
a better and faster convergence. Other parameter values led to 
a slower convergence and sometimes, non-convergence. When 
tested against commercial antivirus, the evolved virus as 
scanned with ESET detects 56% of generated variants; while 
Norton Symantec detects 47% as in fig. 4a and 4b. 
 

 
Fig. 4b: Evolved Variants scanned with Norton Symantec 

VI. CONCLUSION 
With Noreen et al (2008), we note that though the proposed 

framework is posed as an evolvable malware system. It can be 
adapted to software evolution – which is a process associated 
with modifying existing software for both backward and 
forward compatibility as well as emphasizes component reuse 
(Gray and Klefstad, 2005). Also, a wide variety of replicative 
and non-replicative malware can also be evolved via proposed 
framework to increase network security research and study.  
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